253
Views
37
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On array models theoretical predictions versus measurements for the growth of cells and dendrites in the transient solidification of binary alloys

, &
Pages 1705-1723 | Received 14 May 2010, Accepted 03 Dec 2010, Published online: 08 Feb 2011
 

Abstract

Most of the theoretical studies of the growth of cells/dendrites in the literature are based on the assumption that it is a steady-state phenomenon. The analysis of cells/dendritic structures in the unsteady-state regime is very important, since it encompasses the majority of industrial solidification processes. The aim of the present investigation was to validate the predictions furnished by the cellular and primary dendritic growth models in the literature for unsteady-state conditions against a large spectrum of experimental data, which includes those for a variety of Al alloys (Al–Cu, Al–Si, Al–Fe, Al–Bi, Al–Ni, Al–Sn) and low thermal diffusivity alloys, such as Sn–Pb and Pb–Sb. The predictions furnished by the Hunt–Lu model do not match the cellular experimental scatter for any examined alloy system. However, this model matches well with the primary dendritic growth of Al alloys, with the exception of Al–Sn alloys, for which the Hunt–Thomas approach has to be applied. The primary dendritic predictions of Bouchard–Kirkaldy's model, performed with the originally suggested a 1 calibration factors are, in most cases, located above the experimental points. Experimental growth laws relating cellular and dendritic spacings with the tip growth rate and the cooling rate, respectively, are established.

Acknowledgements

The authors acknowledge the financial support provided by FAPESP (The Scientific Research Foundation of the State of São Paulo, Brazil), CNPq (The Brazilian Research Council) and FAEPEX-UNICAMP.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.