167
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles study of the effect of iron on the crystal structure, stability and chemical bonding in the β-based AlCu ordered η2-phase and the pretransition state of a solid solution

&
Pages 1649-1662 | Received 24 Jun 2011, Accepted 21 Dec 2011, Published online: 31 Jan 2012
 

Abstract

First-principles calculations showed that the thermodynamic stability of β-based ordered η2-AlCu phase doped with Fe is due to iron substitution in the copper sublattice (FeCu), which corresponds to the maximum number of Fe–Al bonds in the first cubic coordination polyhedron. This iron localisation leads to stable ω-like atomic displacements and pentagonal Al-nets in the (010) plane of η2-AlCu(Fe). This phase with iron substituting copper (e/a = 1.925) is an energetically preferred η-based non-canonical approximant of the icosahedral phase (e/a = 1.86). The energy gain for the FeCu position is determined by strong covalent Fe3d–Al3p bonding, while there is a weak Fe3d–Cu4s3d hybridisation for the FeAl substitution. Using a composite cluster model, we demonstrate that short-range order in the pretransition state of the β-Al–Cu–Fe solid solution observed prior to the precipitation of η-phase is stabilised due to formation of Fe–Al bonds in the first cubic coordination polyhedron of the composite cluster.

Acknowledgements

This work was supported by an RFBR grant (010-02-00602).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.