350
Views
40
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Towards a nonlinear elastic representation of finite compression and instability of boron carbide ceramic

Pages 2860-2893 | Received 12 Dec 2011, Accepted 13 Mar 2012, Published online: 16 May 2012
 

Abstract

A nonlinear constitutive model invoking third-order anisotropic elasticity is developed for boron carbide single crystals subjected to potentially large compressive stresses. The model makes use of limited available published data from various experimental and theoretical (i.e., quantum or ab initio) studies. The model captures variations in second-order tangent elastic moduli and loss of elastic mechanical stability with increasing compression. In particular, reduced stability of boron carbide single crystals compressed normal to the c-axis (i.e., [0001]-direction) relative to higher stability in spherical compression is represented. Different stability criteria proposed in the literature are examined for boron carbide under spherical and uniaxial compression; model predictions show that the most critical criterion corresponds to a vanishing eigenvalue of a particular tangent stiffness matrix (i.e., incremental modulus) derived exactly in the present work. Model constants are proposed for CCC (less elastically stable) and polar CBC (more elastically stable) polytypes of boron carbide. Application of the model to a homogeneously strained polycrystal provides support for the hypothesis that failure (e.g., amorphization) follows a loss of elastic stability of favorably oriented grains at shock pressures on the order of 18–20 GPa. Additional experiments or atomic simulations are suggested that would resolve currently indeterminate features of the nonlinear elastic model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.