398
Views
16
CrossRef citations to date
0
Altmetric
Part A: Materials Science

ZnO nanorod-based UV photodetection and the role of persistent photoconductivity

&
Pages 3909-3919 | Received 18 Apr 2012, Accepted 08 May 2012, Published online: 21 Jun 2012
 

Abstract

We report on the substantial persistent photoconductivity (PPC) response exhibited by the zinc oxide (ZnO) nanorod-based ultraviolet (UV) photodetection system. An increase in photocurrent and, hence, rise in PPC was observed for larger UV exposure times at regular intervals. Triggered by quantum efficiency, the increment in sustained conduction band electrons is proposed as the main reason behind the increased photocurrent response. In contrast, the trap centers located below the conduction band are expected to slow down the recombination rate, which accounts for the rise in PPC. The lowering of PPC upon annealing suggests the surface dependent nature of the PPC. The growth and decay mechanism of PPC has a direct relevance while assessing figure of merit of prototype nanostructure-based optical sensor and UV photodetectors.

Acknowledgements

One of the authors (SB) acknowledges UGC, New Delhi for the financial support received under the Rajiv Gandhi National fellowship (RGNF) scheme.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.