583
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Transmission electron microscopy of deformed Ti–6Al–4 V micro-cantilevers

, , &
Pages 3290-3314 | Received 19 Aug 2011, Accepted 19 May 2012, Published online: 18 Jul 2012
 

Abstract

Single α–β colony micro-cantilevers were machined from a polycrystalline commercial Ti–6Al–4 V sample using a focussed ion beam. Each cantilever contained several alpha lamellae separated by thin fillets of beta. A nanoindenter was used to perform micro-bending tests. The a3 prismatic slip system was selectively activated in the cantilevers by controlling the crystal orientation along the micro-cantilever. Specimens for transmission electron microscopy (TEM) were prepared using a dual-beam focussed ion beam from a series of micro-cantilevers deformed to various extents. Bright field scanning transmission electron microscopy (BF-STEM) was used to investigate the processes of slip nucleation, propagation and transmission through the α/β interface. The cantilevers had an equilateral triangular cross-section with the bar at the top and the apex at the bottom. The compressive stresses developed near the apex were thus twice the tensile stresses near the top. Dislocations initiate first from the bottom and then from the top and move toward the neutral line. Even in the sample with a small deflection, i.e. 0.5 µm, dislocations were observed at the bottom of the cantilever, but dislocations were not observed at the top until the deflection reached 3 µm. Pile-ups pushed the dislocations past the neutral line when the micro-cantilevers were deflected to more than 4 µm.

Acknowledgments

This work was funded by EPSRC via grants EP/E044514/1 and EP/E044778/1. We thank Prof. David Rugg (Rolls-Royce) for his interest throughout the project, for useful discussions and for reviewing the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.