407
Views
24
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Elastic constitutive laws for incompatible crystalline media: the contributions of dislocations, disclinations and G-disclinations

, , &
Pages 794-832 | Received 04 May 2012, Accepted 18 Sep 2012, Published online: 31 Oct 2012
 

Abstract

Linear higher-grade higher-order elastic constitutive laws for compatible (defect-free) and incompatible (containing crystal line defects) media are presented. In the proposed model, the free energy density of a body subjected to elastic deformation under the action of surface tractions, moments or hyper-traction tensors (second-order tensors whose anti-symmetric part corresponds to moments) has contributions coming from the first two gradients of displacements. Thermodynamic considerations reveal that only the symmetric component of the gradient of elastic displacement, i.e., compatible elastic strain tensor, and the anti-symmetric component of the second gradient of elastic displacement, i.e., compatible third-order elastic curvature tensor, contribute to the free energy density during compatible deformation of the body. The line crystal defect contributions are accounted for by incorporating the incompatible components of elastic strains, curvatures and symmetric 2-distortions as state variables of the free energy density. In particular, the presence of generalized disclinations (G-disclinations) is acknowledged when the medium is subjected to surface hyper-traction tensors having a non-zero symmetric component along with surface-tractions on its boundary. Mechanical dissipation analysis provides for the coupling between the Cauchy stresses and third-order symmetric hyper-stresses. The free energy density and elastic laws for a defect-free and line crystal defected medium are proposed in a linear setting. In the special case of isotropy, the cross terms between elastic strains and curvatures contribute to the free energy density through a single elastic constant. More interestingly, the Cauchy and couple stresses are found to have contributions coming from both, elastic strains and curvatures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.