278
Views
16
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Consolidation of cryomilled Al–Si using spark plasma sintering

, &
Pages 2445-2464 | Received 25 Jul 2012, Accepted 14 Feb 2013, Published online: 11 Apr 2013
 

Abstract

Cryomilled eutectic aluminum–12% silicon powder was sintered using spark plasma sintering (SPS) to create bulk compacts. The cryomilling serves to break up and disperse the eutectic phase in the powder to create a well-distributed Si phase throughout the matrix and to modify the morphology of the Si phase from plate-like to spherical, whilst refining the aluminium grain size to the nanometric level. The effects of different sintering times and temperatures using SPS on the densification of the powder, the aluminium grain size evolution, the growth of the Si phase and the morphology change of the Si phase were investigated. The compacts were analysed using X-ray diffraction, scanning electron microscopy and optical microscopy. The initial stages of densification appear to be highly dependent on the yield strength of the powder. An estimate of the temperature gradient seen in the powder bed was made and calculated to be near 200 °C at the highest point. The Al and Si phase growth was investigated and it was observed that the Si coarsening rate is increased due to the increased volume of grain boundaries. As the Si coarsens, any pinning effect on the Al grains is lost, resulting in a highly unstable microstructure that coarsens rapidly.

Acknowledgements

The authors would like to thank McGill University, REGAL, ALCOA and NSERC for their financial support of this project. The authors would also like to acknowledge the assistance of Nicolas Brodusch in operation of the SU-8000 FE-SEM and members of the NAIN laboratory for their contributions to this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.