343
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microcantilever bend testing and finite element simulations of HIP-ed interface-free bulk Al and Al–Al HIP bonded interfaces

, , , , , , & show all
Pages 2749-2758 | Received 07 Jun 2012, Accepted 11 Mar 2013, Published online: 09 Apr 2013
 

Abstract

We report on the strength of Al–Al interfaces and the effects of chemical segregation and interfacial void formation on bond strength using microcantilever bend testing. Interfaces are synthesised via hot isostatic pressing. Microcantilevers of several nominal dimensions were fabricated via focused ion beam and deformed in a nanoindenter. We find increased cantilever strength as a function of decreasing sample size, with a linear dependence of the yield strength on the inverse square root of the length scale characteristic to the cantilever cross-section. The presence of pores and chemical segregation decreases the yield strength of the material by 17% and the accommodated strain energy by 10–15% for strain values in the 6–12% range.

Acknowledgments

The authors gratefully acknowledge C. Liu and M.L. Lovato for useful conversations and help with tensile tests on bulk Al specimens. The authors would like to acknowledge the financial support of the US Department under the Energy Global Threat Reduction Initiative Reactor Convert program. This work was performed, in part, at the Centre for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.