543
Views
19
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dislocation glide through non-randomly distributed point obstacles

, &
Pages 3664-3679 | Received 02 May 2013, Accepted 22 Jun 2013, Published online: 23 Jul 2013
 

Abstract

Classical meso-scale models for dislocation–obstacle interactions have, by and large, assumed a random distribution of obstacles on the glide plane. While a good approximation in many situations, this does not represent materials where obstacles are clustered on the glide plane. In this work, we have investigated the statistical problem of a dislocation sampling a set of clustered point obstacles in the glide plane using a modified areal-glide model. The results of these simulations show two clear regimes. For weak obstacles, the spatial distribution does not matter and the critically resolved shear stress is found to be independent of the degree of clustering. In contrast, above a critical obstacle strength determined by the degree of clustering, the critical resolved shear strength becomes constant. It is shown that this behaviour can be explained semi-analytically by considering the probability of interaction between the dislocation line and obstacles at a given level of stress. The consequences for alloys exhibiting solute clustering are discussed.

Acknowledgments

The authors would like to gratefully acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.