1,107
Views
65
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Aberration-corrected HAADF-STEM investigations of precipitate structures in Al–Mg–Si alloys with low Cu additions

, , , &
Pages 520-531 | Received 10 Jul 2013, Accepted 15 Oct 2013, Published online: 06 Nov 2013
 

Abstract

Precipitates in a lean Al–Mg–Si alloy with low Cu addition (~0.10 wt.%) were investigated by aberration-corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Most precipitates were found to be disordered on the generally ordered network of Si atomic columns which is common for the metastable precipitate structures. Fragments of known metastable precipitates in the Al–Mg–Si–(Cu) alloy system are found in the disordered precipitates. It was revealed that the disordered precipitates arise as a consequence of coexistence of the Si-network. Cu atomic columns are observed to either in-between the Si-network or replacing a Si-network column. In both cases, Cu is the center in a three-fold rotational symmetry on the Si-network. Parts of unit cells of Q′ phase were observed in the ends of a string-type precipitates known to extend along dislocation lines. It is suggested that the string-types form by a growth as extension of the B′/Q′ precipitates initially nucleated along dislocation lines. Alternating Mg and Si columns form a well-ordered interface structure in the disordered Q′ precipitate. It is identical to the interface of the Q′ parts in the string-type precipitate.

Acknowledgements

The authors would like to thank Dr Olaf Engler, Hydro Bonn Germany, for composition measurements by inductively coupled plasma optical emission spectroscopy. This research is supported by Hydro Aluminum and the Research Council of Norway through the bilateral KMB project: 193619 ‘The Norwegian-Japanese Al–Mg–Si Alloy Precipitation Project’.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.