221
Views
7
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of functionalization on mechanical and electrical properties of carbon nanotube-based silver composites

, &
Pages 1478-1492 | Received 26 Jul 2013, Accepted 31 Jan 2014, Published online: 08 Apr 2014
 

Abstract

In this study, we have extended the molecular-level mixing method to fabricate multiwall carbon nanotube (CNT)-reinforced silver nanocomposites. The multiwall nanotubes used in the synthesis process were dispersed by two ways viz. covalent and non-covalent functionalization techniques. To elucidate the comparative effects of functionalization, structural, mechanical and electrical properties of nanocomposites were evaluated before and after sintering. The structural characterization revealed that the nanotubes were embedded, anchored and homogenously dispersed within the silver matrix. Hardness and Young’s modulus of nanotube-reinforced nanocomposite were increased by a factor of 1–1.6 times than that of pure silver, even before and after the sintering. Covalently functionalized nanotube-based composites have shown more enhanced mechanical properties. The CNT reinforcement also improved the electrical conductivity of low-conducting nanosilver matrix before sintering. Non-covalently functionalized nanotube-based nanosilver composites showed more increased electrical conductivity before sintering. But a negative reinforcement effect was observed in high-conducting bulk silver matrix after the sintering. Thus, covalent functionalization might be appropriate for mechanical improvement in low-strength materials. However, non-covalent functionalization is suitable for electrical enhancement in low-conducting nanomaterials.

Funding

We are grateful for the financial support from the Department of Science and Technology [Project-SR/FTP/PS-054/2011(G)], India.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.