205
Views
14
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Surface effect on size-dependent wave propagation in nanoplates via nonlocal elasticity

, , &
Pages 2009-2020 | Received 05 Mar 2013, Accepted 08 Mar 2014, Published online: 23 Apr 2014
 

Abstract

Within the framework of nonlocal elasticity, the surface layer model is proposed to investigate the wave propagation characteristics in a single-layered nanoplate. The general solutions of nonlocal governing equations are expressed using partial wave technique and the nonclassical boundary conditions are derived. The dispersion relation with the effects of surface and nonlocal small-scale is obtained, and the size-dependent dispersion behaviour is demonstrated. The impacts of surface elasticity, residual surface stress and nonlocal parameter on the dispersion curves of the lowest-order two modes are illustrated. Numerical examples reveal that both the surface effect and nonlocal small-scale effect can obviously decrease the magnitude of phase velocity, and the thinner nanoplate corresponds to the smaller wave velocity and the narrower frequency bandwidth.

Acknowledgement

The first author also would like to acknowledge the support provided by the Fundamental Research Funds for the Central Universities (No. C12JB00170).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.