133
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Enhancement of the power factor of Pb1–xSnxTe (0.00 ≥ x ≥ 0.08) alloys

Pages 3183-3194 | Received 12 Jan 2014, Accepted 05 Jun 2014, Published online: 17 Sep 2014
 

Abstract

Thermoelectric properties of Pb1–x Sn x Te (0.00 ≥ x ≥ 0.08) alloys synthesized by melting-quenching-annealing method have been investigated. The sample structure and phases have been investigated by Raman spectroscopy and X-ray diffraction, while the morphology and stoichiometry have been studied by SEM and EDX. The nanomaterial exists in a single phase and has a face-centred cubic (fcc) lattice of rock-salt type in the whole range of x values in Pb1–x Sn x Te alloys. The effect of tin substitution on the lattice vibration and chemical bonding nature in the lead telluride has been investigated by Raman spectroscopy at room temperature. The Seebeck coefficient and electrical resistivity have been measured in the temperature range of 100–400 K. The electrical resistivity measurements reveal that the compounds have extrinsic to intrinsic conduction transition and the electrical temperature transition shifts to higher values with increasing the Sn content. For all studied compounds, the Seebeck coefficient is positive indicating predomination of positive charge carriers over the entire temperature range. The thermoelectric power factor was enhanced to 2.03 mWm−1 K−2 for the sample with 4% Sn content at room temperature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.