241
Views
25
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigation of characteristic properties of Pr-doped SnO2 thin films

Pages 1607-1625 | Received 03 Feb 2015, Accepted 08 Apr 2015, Published online: 06 May 2015
 

Abstract

In the present work, an investigation study on the crystal structure, surface morphology, electrical conductivity and optical transparency of spray-deposited Pr-doped SnO2 was made as a function of Pr doping content. The X-ray diffraction studies indicated that the films were grown at the (2 1 1) preferential orientation. The values of crystallite size and strain were determined using Williamson–Hall method and they varied between 71.47 and 208.76 nm, and 1.98 × 10−3 – 2.78 × 10−3. As seen from Scanning Electron Microscope micrographs, the films were composed of homogenous dispersed pyramidal-shaped grains. The n-type conductivity of films was confirmed with Hall Effect measurements, and the best electrical parameters were found for 3 at.% Pr doping level. The highest optical band gap and transmittance values were observed for undoped SnO2 sample. The highest figure of merit (Φ), which is a significant parameter to interpret the usage efficiency of conductive and transparent materials in the optoelectronic and solar cell applications, was calculated to be 2.85 × 10−5 Ω−1 for 1 at.% Pr doping content. As a result of this study, it may be concluded that Pr-doped SnO2 films with above properties can be used as a transparent conductor in various optoelectronic applications.

Disclosure statement

No potential conflict of interest was reported by the author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.