193
Views
9
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Theoretical investigations of the structural, electronic and optical properties of Hg1−xCdxTe alloys

&
Pages 2466-2481 | Received 20 Feb 2015, Accepted 08 Jun 2015, Published online: 16 Jul 2015
 

Abstract

The structural, electronic and optical properties of mercury cadmium telluride (Hg1−xCdxTe; x = 0.0, 0.25, 0.5, 0.75) alloys are studied using density functional theory within full-potential linearized augmented plane wave method. We used the local density approximation (LDA), generalized gradient approximation (GGA), hybrid potentials, the modified Becke–Johnson (LDA/GGA)-mjb and Hubbard-corrected functionals (GGA/LDA + U), for the exchange-correlation potential (Eex). We found that LDA functional predicts better lattice constants than GGA functional, whereas, both functionals fail to predict the correct electronic structure. However, the hybrid functionals were more successful. For the case of HgTe binary alloy, the GGA + U functional predicted a semi-metallic behaviour with an inverted band gap of −0.539 eV, which is closest to the experimental value (−0.30 eV). Ternary alloys, however, are found to be semiconductors with direct band gaps. For the x = 0.25 and 0.50, the best band gaps are found to be 0.39 and 0.81 eV using LDA-mbj functional, whereas, the GGA-mbj functional predicted the best band gap of 1.09 eV for Hg0.25Cd0.75Te alloy, which is in a very good agreement with the experimental value (1.061 eV). The optical properties of the alloys are obtained by calculating the dielectric function ɛ(ω). The peaks of the optical dielectric functions are consistent with the electronic gap energies of the alloys.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.