987
Views
37
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A generalised model of hydrogen diffusion in metals with multiple trap types

&
Pages 3429-3451 | Received 05 Dec 2014, Accepted 30 Jul 2015, Published online: 01 Oct 2015
 

Abstract

Continuum modelling of hydrogen diffusion in metals, which accounts for both trapping and an imposed force field, is revisited. A generalised model of hydrogen diffusion and trapping is developed as a continuous interpretation of the discrete random-walk theory. A system of nonlinear equations describing the phenomenon of diffusion with multiple types of traps is derived without the assumption of a local equilibrium among hydrogen populations in dissimilar positions. Lattice-trap interchange kinetics can degenerate into local equilibrium as a limit case. Moreover, certain terms in general equations may be negligible in specific situations. By removing these terms, known particularised models of hydrogen diffusion and trapping are recovered. Determining the terms, which are disregarded in reduced models, enables a straightforward assessment of the applicability of these models. The advantages and limitations of particularised models applied to hydrogen embrittlement analyses are discussed.

Additional information

Funding

This work was supported by EU 7FP Project ‘MultiHy’ [grant number 263335]; Spanish Ministry of Science and Innovation [grant number BIA2011-27870].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.