135
Views
14
CrossRef citations to date
0
Altmetric
IWCS

Realistic tunnelling states for the magnetic effects in non-metallic real glasses

ORCID Icon, &
Pages 648-703 | Received 22 Jun 2015, Accepted 13 Oct 2015, Published online: 24 Dec 2015
 

Abstract

The discovery of magnetic and compositional effects in the low-temperature properties of multi-component glasses has prompted the need to extend the standard two-level systems (2LSs) tunnelling model. A possible extension assumes that a subset of tunnelling quasi-particles is moving in a three-welled potential (TWP) associated with the ubiquitous inhomogeneities of the disordered atomic structure of the glass. We show that within an alternative, cellular description of the intermediate-range atomic structure of glasses the tunnelling TWP can be fully justified. We then review how the experimentally discovered magnetic effects can be explained within the approach where only localized atomistic tunnelling 2LSs and quasi-particles tunnelling in TWPs are allowed. We discuss the origin of the magnetic effects in the heat capacity, dielectric constant (real and imaginary parts), polarization echo and SQUID magnetization in several glassy systems. We conclude by commenting on a strategy to reveal the mentioned tunnelling states (2LSs and TWPs) by means of atomistic computer simulations and discuss the microscopic nature of the tunnelling states in the context of the potential energy landscape of glass-forming systems

Acknowledgements

One of us (SB) acknowledges support from the Italian Ministry of Education, University and Research (MIUR) through a Ph.D. Grant of the Progetto Giovani (ambito indagine n.7: materiali avanzati (in particolare ceramici) per applicazioni strutturali), as well as from the Bando VINCI-2014 of the Università Italo-Francese. We are very grateful to Maksym Paliienko for his help with data fitting and manuscripts preparation. GJ gratefully acknowledges stimulating discussions with A.S. Bakai.

Notes

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.