225
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Displacement field of doubly periodic array of dislocation dipoles in elastically anisotropic media

&
Pages 230-252 | Received 30 Apr 2015, Accepted 05 Dec 2015, Published online: 13 Jan 2016
 

Abstract

The displacement field for dislocation dipoles periodically arranged along both x- and y-directions is found to be conditionally convergent. That is, different displacement fields are obtained depending on the order of the summation to be adopted. From the two summations, one can be performed analytically; however, the other one has to be performed numerically. We first derive analytic expressions for the displacement field of periodic array of dipoles along one (either x or y) direction considering anisotropic elasticity; they are then applied for the numerical summation (practically truncated) along the other direction. The resulting displacement field needs to be corrected by subtracting the spurious displacement field, whose expressions are analytically derived. As a first application, we employ the displacement and corresponding stress fields in a 2D discrete dislocation plasticity (DDP) model of a fine-grained polycrystal under shear loading. To this end, anisotropic plane-strain DDP method is utilised to solve the underlying boundary value problem. Subsequently, predictions of size-dependent plastic behaviour in anisotropic polycrystals with grain sizes in the range are presented.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.