358
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Random alloy diffusion kinetics for the application to multicomponent alloy systems

, &
Pages 1228-1244 | Received 08 Jan 2016, Accepted 23 Feb 2016, Published online: 21 Mar 2016
 

Abstract

In this paper, extensive Monte Carlo simulation results are reported on tracer and collective diffusion correlation effects in the random ternary alloy, as an example of a multicomponent alloy system. The problem of analytically describing both collective and tracer diffusion kinetics is also addressed for the random multicomponent alloy by application of a combination of the Manning theory and Holdsworth and Elliott theory. It is found that the overall results from the combined theory agree reasonably well with Monte Carlo results. This combined approach is much more accurate than Manning’s approach itself and much more manageable than the almost exact, but unfortunately difficult to use, self-consistent theory of Moleko, Allnatt and Allnatt. Some relations between the Onsager phenomenological coefficients and tracer diffusion coefficients are derived and are tested with our Monte Carlo data. Good agreement is found.

Acknowledgements

We wish to thank the Australian Research Council for its support of this research under the Discovery Project Grants Scheme.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.