181
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Reaction pathway analysis for shuffle-set 60° perfect dislocation in Si

, , &
Pages 2902-2918 | Received 23 Apr 2016, Accepted 28 Jul 2016, Published online: 10 Aug 2016
 

Abstract

In this work, the EDIP potential is employed for representing silicon and the shuffle-set 60° perfect dislocation motion is investigated by reaction pathway analysis. There are three possible shuffle-set 60° perfect dislocation core structures named as S1, S2 and S3. The activation energy barriers of the kink migration and nucleation in S1and S2 types are calculated by CI-NEB method. The simulation results show that the critical resolved shear strain of the shuffle-set dislocation in S1 type is around 5%, and the S1 type is the dominate one in the shear strain region of 0 to 5%. During the shear strain from 5to 11.81%, the dislocation moves as the S1 core kink nucleation and migration, meanwhile the S1 dislocation core is in process of transforming into S2. More interestingly, both S1 and S2 dislocation core structures is observed along the dislocation line in this shear strain regime, which could response to the missing observation of long segment dislocation line in the experiment.

Acknowledgement

The authors thank the financial support from the China Scholarship Council.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.