689
Views
21
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A high accuracy diffusion kinetics formalism for random multicomponent alloys: application to high entropy alloys

, , &
Pages 2969-2985 | Received 19 May 2016, Accepted 27 Jul 2016, Published online: 18 Aug 2016
 

Abstract

In this paper, a new, lighter, version of the highly accurate Moleko, Allnatt and Allnatt formalism for describing both tracer (self) and collective diffusion kinetics in multicomponent random alloys is presented. Verification of the resulting expressions is performed by means of kinetic Monte Carlo simulation. The accuracy of the new formalism is much higher than that of the combined Manning and Holdsworth and Elliott formalism discussed recently. Using this formalism the possible range of the tracer diffusion ratio of the highest to the lowest atomic component is examined for equiatomic (or near equiatomic) binary, ternary, quaternary and quinary alloys. It is shown that in the random alloy model, the correlation effect is the highest with a reduction of the fastest tracer diffusion by 40–55%, when moving from two pure metals to their equiatomic binary alloy. By adding the third component (with an intermediate mobility) this effect can be further increased with a possible total reduction of the fastest tracer diffusion by up to 70% (depending on the combinations of mobilities), while adding the fourth component brings this reduction up to 80% and with a possible maximum of up to 85% reduction for the 5-component alloy (again depending on the combinations of mobilities). But the slowest diffusing components are not affected by this. This suggests that kinetics arguments alone are not enough for explaining the sluggish diffusion observed of all atomic components in (equiatomic) high-entropy alloys.

Acknowledgements

IVB and GEM wish to thank the Australian Research Council for its support of this research under the Discovery Project Grants Scheme (DP130101464).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.