1,201
Views
78
CrossRef citations to date
0
Altmetric
NTMRD V

Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour

, , &
Pages 3322-3335 | Received 22 Feb 2016, Accepted 26 Jul 2016, Published online: 02 Sep 2016
 

Abstract

We present a quantitative study of the salient structural parameters identified from so-called ‘representative volumes’ of the bicontinuous nanoporous gold (NPG) network, and examine the validity of self-similarity in describing its evolution. The approach is based on 3D-focused ion beam tomography applied to as-dealloyed and isothermally annealed NPG samples. After identifying sufficiently large representative volumes, we show that the ligament width distributions coarsen in a sufficiently self-similar, time-invariant manner, while the scaled connectivity density shows a self-similar ligament network topology. Using these critical parameters, namely mean ligament diameter and connectivity density, the Gibson–Ashby scaling laws for the mechanical response of cellular materials are revisited. The inappropriateness of directly applying the Gibson–Ashby model to NPG is demonstrated by comparing finite element method compression simulations of both the NPG reconstruction and that of the Gibson–Ashby solid model; rather than the solid volume fraction, we show that an effective load-bearing ring structure governs mechanical behaviour.

Acknowledgments

ETL is grateful to Jürgen Markmann and Jörg Weissmüller for lively discussions, which helped strengthen the work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.