148
Views
10
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles study of the properties of Pmn21-B1–xAlxN

, , &
Pages 3008-3026 | Received 02 Feb 2017, Accepted 28 Jul 2017, Published online: 11 Aug 2017
 

Abstract

The structural, mechanical, elastic anisotropic, thermodynamic and optoelectronic properties of Pmn21-B1–xAlxN are investigated using density functional theory (DFT) calculations. For BN and AlN, the lattice parameters, elastic constants and elastic modulus are found to be in agreement with others’ theoretical data. The absence of any imaginary phonon frequencies in the entire Brillouin zone confirms that Pmn21-B1–xAlxN alloys are dynamically stable. The vibration modes transfer from high frequency to low frequency with the increase of the component Al. All of Pmn21-B1–xAlxN (x = 0, 0.25, 0.50, 0.75, 1) behave in a brittle manner. Ternary BAlN alloys are more anisotropic than BN and AlN. The Debye temperature decreases with the increase of the component Al. At temperatures below 2000 K, the heat capacity of Pmn21-B1–xAlxN increases with the increase of the component Al. For B0.5Al0.5N, below the Fermi level, B p contributes more than Al p, whereas above the Fermi level, Al p contributes more than B p. With the increase of composition Al, B–N interactions become weaker and Al–N interactions become stronger, and the dielectric function, absorption and Raman intensity drift from high-frequency to low-frequency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.