642
Views
37
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A general model for hydrogen trapping at the inclusion-matrix interface and its relation to crack initiation

&
Pages 3296-3316 | Received 19 Apr 2017, Accepted 01 Sep 2017, Published online: 21 Sep 2017
 

Abstract

The role of non-metallic inclusions in hydrogen-induced failure of structural materials has been a controversial topic for many years. In this paper, hydrogen trapping and its relation to the crack initiation at the inclusion-matrix interfaces are studied by considering the interfacial structure and the interaction between the dissolved hydrogen atoms and the elastic strains produced by lattice matching and misfit dislocations. A model is proposed to analyse the change of interfacial structure with inclusion size and its relation to hydrogen trapping. Hydrogen accumulation at the interfaces is quantitatively analysed. The obtained results are in good agreement with the experimental observations. The multiple factors, such as interfacial structure, chemical composition, elastic properties of matrix and inclusions, crystallographic relationship between inclusions and matrix, inclusion morphology and size, simultaneously control hydrogen trapping. In addition, the mechanism of hydrogen-induced crack initiation at the interface is investigated. A criterion is proposed to determine critical conditions for crack initiation. For the first time, the inherent relationship between hydrogen trapping and hydrogen-induced cracking at the interface is clarified. This work paves a way for an in-depth understanding of the effects of inclusions on hydrogen-induced degradation of mechanical properties.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.