1,014
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigation of stress relaxation mechanisms for ductility improvement in SS316L

, , , , &
Pages 165-181 | Received 11 Aug 2017, Accepted 17 Oct 2017, Published online: 06 Nov 2017
 

Abstract

Stress relaxation during plastic deformation has been reported to improve ductility and alter the mechanical properties of metallic materials. The aim of the present study is to investigate the role of various mechanisms responsible for this in stainless steel SS 316L. The fractography of the tested samples is analysed using an image analyser and the void fraction at failure is correlated with the corresponding mechanisms. The parametric studies on stress relaxation at different pre-strain and relaxation time correlate well with the fractography results supporting the proposed mechanisms. TEM investigation of dislocation structures and void characterisation further confirm the role of dislocation annihilation. Moreover, a novel indentation technique combining micro- and nano-indentation techniques is used to verify the role of stress homogenisation mechanism.

Acknowledgements

Jayant Jain would like to thank Deakin, Australia for providing the support in the transmission electron microscopy work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.