264
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Electronic structure and glass forming ability in early and late transition metal alloys

, , , , &
Pages 693-709 | Received 18 Sep 2017, Accepted 06 Dec 2017, Published online: 18 Dec 2017
 

Abstract

A correlation between the change in magnetic susceptibility (Δχexp) upon crystallisation of Cu–Zr and Hf metallic glasses (MG) with their glass forming ability (GFA) observed recently, is found to apply to Cu–Ti and Zr–Ni alloys, too. In particular, small Δχexp, which reflects similar electronic structures, ES, of glassy and corresponding crystalline alloys, corresponds to high GFA. Here, we studied Δχexp for five Cu–Ti and four Cu–Zr and Ni–Zr MGs. The fully crystalline final state of all alloys was verified from X-ray diffraction patterns. The variation of GFA with composition in Cu–Ti, Cu–Zr and Cu–Hf MGs was established from the variation of the corresponding critical casting thickness, dc. Due to the absence of data for dc in Ni–Zr MGs their GFA was described using empirical criteria, such as the reduced glass transition temperature. A very good correlation between Δχexp and dc (and/or other criteria for GFA) was observed for all alloys studied. The correlation between the ES and GFA showed up best for Cu–Zr and NiZr2 alloys where direct data for the change in ES (ΔES) upon crystallisation are available. The applicability of the Δχexp (ΔES) criterion for high GFA (which provides a simple way to select the compositions with high GFA) to other metal-metal MGs (including ternary and multicomponent bulk MGs) is briefly discussed.

Acknowledgement

We thank Prof. J . R. Cooper for many useful suggestions, and Drs. I. Bakonyi and L. K. Varga for giving us Cu–Hf samples with x = 30 and 40. Our research was supported by the project ‘IZIP2016’ of the Josip Juraj Strossmayer University of Osijek. I. A. Figueroa acknowledges the financial support of UNAM-DGAPA-PAPIIT, project No. IN101016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.