230
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Site stability and pipe diffusion of hydrogen under localised shear in aluminium

, &
Pages 1184-1205 | Received 27 Jul 2018, Accepted 05 Jan 2019, Published online: 20 Feb 2019
 

ABSTRACT

This paper studies the effect of a plastic shear on the tetrahedral vs. octahedral site stability for hydrogen, in aluminium. Based on Density Functional Theory calculations, it is shown that the tetrahedral site remains the most stable site. It transforms into the octahedral site of the local hexagonal compact structure of the intrinsic stacking fault. The imperfect stacking is slightly attractive with respect to a regular lattice site. It is also shown that the shearing process involves a significant decrease of the energetic barrier for hydrogen jumps, at half the value of the Shockley partial Burgers vector, but not in the intrinsic stacking fault. These jumps involve a displacement component perpendicular to the shearing direction which favours an enhancement of hydrogen diffusion along edge dislocation cores (pipe diffusion). The magnitude of the boost in the jump rate in the direction of the dislocation line, according to Transition State Theory and taking into account the zero point energy correction, is of the order of a factor 50, at room temperature. First Passage Time Analysis is used to evaluate the effect on diffusion which is significant, by only at the nanoscale. Indeed, the common dislocation densities are too small for these effects (trapping, or pipe diffusion) to have a signature at the macroscopic level. The observed drop of the effective diffusion coefficient could therefore be attributed to the production of debris during plastic straining, as proposed in the literature.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was performed using HPC resources from CALMIP (Grant 2018-p0749) and Agence Nationale de la Recherche (Blanc 10- 19424).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.