291
Views
2
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Synthesis and characterization of graphene nanoplatelet-La0.7Ca0.3MnO3 composites

, ORCID Icon, , , &
Pages 2736-2750 | Received 03 Dec 2018, Accepted 19 Jun 2019, Published online: 10 Jul 2019
 

ABSTRACT

La0.7Ca0.3MnO3 perovskite and its composites with graphene nanoplatelet (GNP) were prepared using a wet chemical method. The structural, magnetic and magnetocaloric properties of La0.7Ca0.3MnO3: GNP composites were investigated to determine the effect of GNPs. The results of XRD analysis show that the synthesised powders can be almost indexed to pure phase orthorhombic La0.7Ca0.3MnO3. The magnetic measurements demonstrate that 0.7 and 1% GNP amounts cause an increase in the Curie temperature (TC), and for larger amounts of GNP, the TC monotonically decreases, except for the sample with 10% GNP. The results obtained from the Arrott plots show that the magnetic phase transition of the samples transforms from the first to second order with increasing GNP amount. The changes in the magnetocaloric properties are interpreted in terms of perovskite phase formations via structural analysis. The amounts of graphene nanoplatelets in the oxide powders are correlated with the observed magnetocaloric properties. The best magnetocaloric performance with the maximum magnetic entropy change of 3.99 Jkg−1K−1 and refrigeration capacity of 90 Jkg−1 was obtained at a 2 T magnetic field.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Commission for Scientific Research Projects of the Bursa Uludag University [Project number OUAP(F)-2018/4].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.