593
Views
15
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural, electronic, magnetic and thermoelectric properties of inverse Heusler alloys Ti2CoSi, Mn2CoAl and Cr2ZnSi by employing Ab initio calculations

, , ORCID Icon, , , & show all
Pages 1636-1661 | Received 14 Sep 2019, Accepted 10 Feb 2020, Published online: 24 Feb 2020
 

ABSTRACT

The inverse Heusler alloys such as Ti2CoSi, Mn2CoAl and Cr2ZnSi were studied in the framework of density functional theory using FP-LAPW linearised augmented plane wave method in order to determine the different physical properties such as structural, electronic, magnetic and thermoelectric. The generalised gradient approximation (GGA) was used to treat the exchange–correlation energy and the Beck-Johnson (mBJ) approach was used to calculate the electronic properties. In all studied compounds, the stable type Hg2CuTi was energetically more favourable than Cu2MnAl type structure. The results show that two compounds (Ti2CoSi and Mn2CoAl) are both ferromagnetic (FM) while Cr2ZnSi is antiferromagnetic (AFM). The compounds Ti2CoSi and Mn2CoAl have a total magnetic moment of 3 and 2 μB, respectively, whereas the Cr2ZnSi alloy has a total magnetic moment equals zero. The Ti2CoSi, Mn2CoAl and Cr2ZnSi compounds exhibit half-metallic (HM) character with 100% spin polarisation at the Fermi level. Finally, the semi-classical Boltzmann theory implicit in the BoltzTraP code was used to calculate the electronic transport coefficients such as thermal and electrical conductivity, the Seebeck coefficient and the factor of merit.

Acknowledgments

Three of us (Dj. Mokhtari, H. Baaziz and Z. Charifi) would like to thank the directorate general for scientific research and technological development for their financial support during the realisation of this work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.