59
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A hybrid dislocation

&
Pages 1161-1175 | Received 09 Sep 2020, Accepted 30 Jan 2021, Published online: 26 Feb 2021
 

ABSTRACT

The shear of a crystalline interface by a matrix dislocation is an elementary phenomenon of plasticity that generates a three-dimensional elastic field difficult to express. However, in the case of a flat interface and two elastic isotropic media, the present work shows that this field can be described starting from an explicit form of the Green tensor associated with a point force exerted in one of the crystals. Indeed, the knowledge of this tensor makes it possible to express the displacement field of a dislocation in the final form of a surface integral. Because the shear is limited by a matrix branch and an interfacial branch, the dislocation can be called ‘hybrid dislocation’ or HD. If the two branches are straight, the field is that of an angular HD. Moreover, if the crystals are identical, the field becomes that of an angular matrix dislocation whose field is well known since Yoffe (1960). By applying the superimposition theorem, it becomes possible to determine the field of more complex configurations, such as those sometimes observed during the transmission of the plastic slip through the interfaces.

Acknowledgement

One of the authors (Dr Salem Neily) wishes to thank the University of Monastir (Monastir, Tunisia) for financial support of the work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.