155
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Iron nitride, α″-Fe16N2, around <100> interstitial type dislocation loops in neutron-irradiated iron

ORCID Icon, , , , &
Pages 1202-1213 | Received 29 Jun 2020, Accepted 09 Feb 2021, Published online: 26 Feb 2021
 

ABSTRACT

Atom probe tomography (APT) and selected area electron diffraction (SAED) by transmission electron microscopy (TEM) were applied to nano-scale precipitates formed in a neutron-irradiated iron (99.99% pure) at high temperatures. In the conventional TEM, we discovered donut-type precipitates on the {100} planes that formed at the dilatational side of interstitial type dislocation loops with the Burgers vector of <100> on the habit planes of {100} in the bcc iron lattice. The precipitates were identified as nitride, bct α″-Fe16N2, by chemical composition and lattice structural analyses using APT and SAED. Image contrasts of the α″-Fe16N2 in a weak beam dark-field electron microscopy study were carefully analysed with the diffraction vector and the sign of deviation parameter from the Bragg condition, and it was concluded to be a selective visualisation of α″-Fe16N2 on one of the {100} planes. These results were in agreement with the crystallographic orientation between the α″-Fe16N2 and matrix iron, thereby bridging a knowledge gap in α″-Fe16N2 formation during neutron irradiation using a sodium-cooled experimental fast reactor, JOYO, or a 14 MeV D-T neutron source, RTNS-II.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.