286
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Phase field mechanics of residually stressed ceramic composites

ORCID Icon, &
Pages 1891-1944 | Received 11 Mar 2022, Accepted 06 May 2022, Published online: 21 Jun 2022
 

ABSTRACT

A phase field theory for crystalline solids accounting for thermoelasticity, fracture, twinning, and limited slip is presented. Residual stresses are incorporated via referencing thermoelastic strain to a reference state that is not always stress-free. Rate dependence, dissipated energy, and residual strain energy (possibly degraded by local fracture) are included in the theory, with physically valid predictions first verified for homogeneous stress states. A variational form of the model is implemented in finite element (FE) calculations of three-dimensional (3-D) polycrystalline aggregates consisting of up to two different crystal constituents and a binding matrix along grain and phase boundaries. Model specifics correspond to constituents of boron carbide-titanium diboride (B4C-TiB2) ceramic composites. Effects of thermal-residual stresses incurred during processing, as well as other local microstructure properties and physical features, on deformation and failure mechanisms are revealed. Peak aggregate strengths observed for different boundary conditions demonstrate a pressure-dependent failure surface.

Acknowledgments

Informative exchanges with Prof. Tom Scharf (University of North Texas with joint faculty appointment at DEVCOM ARL) are highly appreciated.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.