95
Views
27
CrossRef citations to date
0
Altmetric
Research papers

Enhancement of cr(lll) phytoaccumulation

&
Pages 269-286 | Published online: 22 Sep 2008
 

Abstract

Chromium (III) accumulation in high biomass agricultural crops, sunflower (Helianthus annum) and Indian mustard (Brassica juncea) was studied using four soils (pH 4.6 to 7.6) contaminated with different rates of CrCl3.6H2O in the presence of synthetic chelate and organic acids. Chromium is essential for normal glucose metabolism in humans and animals, but its contamination and recovery from soils is of environmental concern. Adding ethylenediaminetetraacetic acid (EDTA), citric acid, or oxalic acid to Cr(III)‐contaminated soils significantly increased Cr concentration in plant shoots and roots. Adding Cr(III) complexes of EDTA, citric acid, and oxalic acid to soils dramatically increased (>200‐fold) Cr concentration in shoots and roots. Plant growth was severely decreased but was dependent on soil type, chelate rate, form, and time of chelate application. Chelates and organic acids enhanced Cr(III) accumulation, but its toxic effects were not avoided. Chromium(III) complexes were as toxic to plants as Cr(VI). The phytoaccumulation and recovery of Cr(III) from soils were limited and depended on soil type.

Notes

1‐[email protected]. Tel. 979–845–3814. Fax: 979–845–0456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.