344
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Successful Micropropagation of the Cadmium Hyperaccumulator Viola Baoshanensis (Violaceae)

, , , , &
Pages 761-771 | Published online: 21 Jul 2010
 

Abstract

Viola baoshanensis is one of the most rare cadmium (Cd) hyperaccumulators, however, it is hard to propagate. Micropropagation has been applied to solve the problems with propagation of a few heavy metal hyperaccumulators. Therefore there is a high likelihood that micropropagation may offer a suitable method for large-scale propagation of V. baoshanensis. To test this hypothesis, three types of explants were used for shoot regeneration and various combinations of four plant growth regulators were used to improve shoot regeneration efficiency from leaflet of V. baoshanensis. Best shoot regeneration efficiency was obtained by incubating leaflet in a 1/2 MS medium supplemented with 2.5 μM BA + 2.5 μM IBA, therein shoot regeneration rate was 70.9% and the number of shoots formation per explant was 22.4. Rooting was achieved from almost all regenerated shoot growing on 1/2 MS medium without plant growth regulator. Micropropagated seedlings were acclimatized under greenhouse conditions and 95% of them survived and showed no visible morphological variation compared to their donor plant. Furthermore, there were no significant differences between regenerated and seed-germinated V. baoshanensis in Cd tolerance and accumulation. These results suggested that an efficient and rapid micropropogation system was successfully developed for V. baoshanensis.

ACKNOWLEDGMENTS

This study was supported by the National 863 project of China (2006AA06Z359), Natural Science Foundation of China (40471117 and 30400053) and Team Work Project of the Natural Science Foundation of Guangdong Province (06202438).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.