532
Views
47
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms of Arsenic Tolerance and Detoxification in Plants and their Application in Transgenic Technology: A Critical Appraisal

, &
Pages 506-517 | Published online: 22 Dec 2011
 

Abstract

Arsenic (As) contamination of the environment has emerged as a serious problem. Consequently, there is an urge to understand plants’ responses to As. The analysis of various hypertolerant and hyperaccumulator plants and comparison of their responses with non-tolerant and nonaccumulators have provided valuable information about the mechanisms of As tolerance and detoxification. Therefore, we understand why most of the pteridophytes are able to hyperacumulate As, why it is difficult to find hyperaccumulators among angiosperms and why rice is able to translocate As to its grains more efficiently than any other cereal crop. This information can be employed to generate As hyperaccumulators in angiosperms and to develop safe cultivars of rice for human consumption through biotechnological approaches. Although measurable success, in terms of application in the field, has so far not been achieved, transgenic research has yielded promising results, which shed light on the approaches to be taken up in future endeavor. In this review, we discuss the mechanisms of As tolerance and detoxification in plants and transgenic research conducted.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.