180
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Response Characteristics of Scirpus Triqueter and Its Rhizosphere to Pyrene Contaminated Soils at Different Growth Stages

, , , , , , , & show all
Pages 691-702 | Published online: 23 Apr 2012
 

Abstract

Scirpus triqueter (Triangular club-rush), a typical wetland species, is used to study the response characteristics to pyrene. A pot experiment was conducted to investigate the growth parameters (height, diameter, shoot number, total volume, underground biomass, aboveground biomass and total biomass), and enzymes (catalase and superoxide dismutase) of S. triqueter. The characteristics of soil enzymes (catalase and polyphenol oxidase) and microorganisms (bacteria and fungi) were also assessed after pyrene treatment. Elevated pyrene concentration (80 mg·kg−1) in the soil reduced the shoot number and biomass significantly, especially at the early growth stage. In root tissue, the enzyme catalase was activated at 80 mg·kg−1 of pyrene. Compared to roots, shoots had higher enzyme activities. Catalase activities in the rhizosphere increased throughout the growth period of S. triqueter. Polyphenol oxidase activities in the rhizosphere were higher than those in the bulk soil and unplanted soil. The populations of bacteria (total bacteria, pyrene-tolerant bacteria, and actinomyces) and fungi decreased under the stress of high pyrene concentration, while that of pyrene-tolerant bacteria increased with the increasing pyrene concentration. The presence of pyrene did not benefit the growth of S. triqueter. S. triqueter and soil enzymes varied within the growth stages. The presence of S. triqueter could improve the activity of soil enzymes and facilitate the propagation of microorganisms which could help eliminate pyrene contamination.

ACKNOWLEDGMENTS

The work was funded by the National Natural Science Foundation of China (No. 41073072, 40973073), Shanghai Leading Academic Discipline Project (No. S30109), technology fund of Shanghai University, and China National innovative pilot project & Shanghai innovation activity plan for undergraduates.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.