182
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Physiological Responses and Tolerance Mechanisms to Cadmium in Conyza canadensis

, , , , , , & show all
 

Abstract

Experiments were conducted to examine the effects of different concentrations of Cd on the performance of the Cd accumulator Conyza canadensis. Cd accumulation in roots and leaves (roots > leaves) increased with increasing Cd concentration in soil. High Cd concentration inhibited plant growth, increased the membrane permeability of leaves, and caused a significant decline in plant height and chlorophyll [chlorophyll (Chl) a, Chl b, and total Chl] content. Leaf ultrastructural analysis of spongy mesophyllic cells revealed that excessive Cd concentrations cause adverse effects on the chloroplast and mitochondrion ultrastructures of C. canadensis. However, the activities of antioxidant enzymes, such as superoxide dismutase, catalase, peroxidase, total non-protein SH compounds, glutathione, and phytochelatin (PC) concentrations, showed an overall increase. Specifically, the increase in enzyme activities demonstrated that the antioxidant system may play an important role in eliminating or alleviating the toxicity of Cd in C. canadensis. Furthermore, results demonstrate that PC synthesis in plant cells is related to Cd concentration and that PC production levels in plants are related to the toxic effects caused by soil Cd level. These findings demonstrate the roles played by these compounds in supporting Cd tolerance in C. canadensis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.