380
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Elemental sulfur improves growth and phytoremediative ability of wheat grown in lead-contaminated calcareous soil

, , , , , & show all
 

ABSTRACT

Little is known about the effect of elemental sulfur on lead uptake and its toxicity in wheat. A pot experiment was conducted with the purpose to examine the impact of sulfur on improving Pb solubility in soil, and uptake and accumulation in wheat plants. The effect of three levels of lead (0, 50, and 100 mg/kg soil) and sulfur (0, 150, and 300 mmol/kg soil) was tested in all possible combinations. Root dry matter, straw, and grain yields, and the photosynthetic and transpiration rates decreased significantly with increase in the concentration of Pb in the soil. However, sulfur fertilization in the presence of Pb improved the photosynthetic and transpiration rates and consequently increased the straw and grain yields of wheat. It also enhanced Pb accumulation in roots, its translocation from roots to shoot, and accumulation in grain. S and Zn contents of different plant parts were also enhanced. Thus, by mitigating the toxic effect of Pb and improving wheat growth, sulfur enhances Pb accumulation by the aboveground plant parts and hence the phytoextraction capacity of wheat. However, total accumulation of Pb shows that wheat plant cannot be considered as a suitable candidate for phytoremediation.

Acknowledgment

The authors thank the Soil and Water Chemistry Section, Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad and University of Dammam for providing laboratory facilities to conduct this research.

Conflict of Interest

The authors have declared no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.