303
Views
4
CrossRef citations to date
0
Altmetric
Articles

Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn.

, , , &
 

ABSTRACT

To indentify Mn/Cd co-hyperaccumulatoion in Celosia argentea Linn., 2 pot experiments were conducted using Cd/Mn-amended and real contaminated soils, respectively. The interaction between Cd and Mn with regard to their accumulation in the plants was also assessed. The results indicated that C. argentea can simultaneously hyperaccumulate Cd and Mn. The maximum Cd and Mn concentrations in leaves were 276 and 29,000 mg/kg, respectively. Mn application significantly enhanced the biomass production and Cd accumulation in shoots (p < 0.05). However, Cd addition did not reduce Mn accumulation in the plants. The interactions between Cd and Mn in C. argentea differ from what was previously found in hydroponic experiments. This species grew healthy in soils taken from a Cd/Mn-contaminated site, indicating a high tolerance to Cd and Mn. The transfer and bioaccumulation factors of Cd and Mn were greater than 1, which showed that C. argentea had potential for Cd and Mn phytoextraction. Besides its potential practical benefits, C. argentea is an important resource to study the mechanisms of Cd/Mn hyperaccumulation and tolerance in plants.

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China (41471270), the Special Funding for Guangxi “BaGui Scholars” Construction Projects, and the Natural Science Foundation of Guangxi (2014GXNSFGA118009).

Additional information

Funding

This research was sponsored by the National Natural Science Foundation of China (41471270), the Special Funding for Guangxi “BaGui Scholars” Construction Projects, and the Natural Science Foundation of Guangxi (2014GXNSFGA118009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.