230
Views
5
CrossRef citations to date
0
Altmetric
Articles

Physiological and molecular responses of pearl millet seedling to atrazine stress

, , , , &
 

ABSTRACT

Pearl millet has been recommended beneficial for several therapeutic purposes. However, little is known of the physiological responses to abiotic stressors, especially of atrazine. In order to elucidate the physiological and molecular responses of pearl millet to atrazine stress, we studied the response of various biomarkers under increasing herbicide concentrations (0, 5, 10, and 50 mg/kg). We also quantified the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) produced in the leaves to evaluate the extent of oxidative damage. Increasing atrazine concentrations significantly increased ROS and MDA production in the plant leaves. Ascorbate peroxidase (APX) and peroxidase (POD) activities increased, while catalase (CAT) and superoxide dismutase activities reduced with increasing atrazine concentrations. Generally, atrazine applied at 50 mg/kg suppressed chlorophyll contents, whereas, chlorophyll (a/b) ratio was increased. Atrazine applied at 50 mg/kg significantly suppressed antioxidant gene expressions to the lowest. The APX gene showed overall low response to the atrazine treatments. The chloroplastic psbA gene showed highest expression with 10 mg/kg atrazine, whereas atrazine at 50 mg/kg significantly suppressed the gene expression to its lowest. Pearl millet was able to suppress oxidative stress under low atrazine levels, but high atrazine concentration could induce more oxidative damage.

Acknowledgments

This research was supported by National Natural Science Foundation of China (31300433), University of Science and Technology Innovation Team Construction Projects of Heilongjiang Province (2013TD003).

Additional information

Funding

National Natural Science Foundation of China 31300433; University Science and Technology Innovation Team Construction Projects of Heilongjiang Province 2013TD003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.