351
Views
18
CrossRef citations to date
0
Altmetric
Articles

Interactions between cadmium and zinc in uptake, accumulation and bioavailability for Salix integra with respect to phytoremediation

, , , , , ORCID Icon & show all
 

Abstract

The willow (Salix spp.) is a potential accumulator of cadmium (Cd)/zinc (Zn), and the interaction between Cd and Zn is an important factor influencing their phytoextraction potentials. In this study, interactions between Cd and Zn in uptake, accumulation and bioavailability for Salix integra clone SI63 were investigated through nutrient solution and soil culture methods. The result of the soil culture showed that Cd had additive effects for Zn-caused biomass reduction. The result from nutrient solution indicated that added Zn showed antagonistic (low Cd level) or synergistic (moderate and high Cd levels) effects on shoot Cd accumulation and antagonistic effects on root Cd accumulation. Irrespective of nutrient solution or soil culture experiment, Cd addition always had antagonistic effects on Zn accumulation in both shoots and roots. Under Cd10Zn50 condition, the clone accumulated higher Cd and Zn concentrations (95 μg g−1 Cd and 165 μg g−1 Zn) in shoots. Cd slightly increased bioavailable Zn in the rhizosphere, and EDTA well predicted bioavailable Cd and Zn in the rhizosphere. Interactions of Cd–Zn markedly changed their respective phytoextraction potentials, especially for Zn. This result will provide a new insight into improving phytoextraction potentials of both Cd and Zn using willows through applying metal interactions.

Additional information

Funding

This work was funded by the National Natural Science Foundation of China [31100513].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.