193
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

High efficiency phytoextraction of uranium using Vetiveria zizanioides L. Nash

&
 

Abstract

Uranium uptake, translocation and its effects on leaf anatomy in vetiver grass (Vetiveria zizanioides L. Nash) grown in hydroponics were investigated at a wide range of concentrations. At concentrations below 200 ppm (1, 5, 25, 100, and 200 ppm) almost 90–95% of uranium was depleted from the medium within 3 days of treatment, while at other concentrations viz., at 318, 500, 619, 1,000, 5,000, 7,500, and 11,900 ppm, it reached a maximum between 7 and 14 days, with a marginal increase in the depletion thereafter. Most of the uranium could be recovered from plants at concentrations below 200 ppm. On the contrary, a significant reduction in the recovery of uranium was noticed at higher concentrations and the percentage of recovery dropped from 82% at 318 ppm to 35% at 11,900 ppm. While most of the uranium taken up by the plants could be recovered from roots at lower concentrations, a preferential translocation of the element to shoot occurred at concentrations beyond 1,000 ppm. Histological studies of leaves from plants treated with 1,000 ppm uranium displayed the formation of multilayered cells between the epidermis and vascular bundles on the adaxial side in the distal regions of the leaves. The plants were also found to tolerate and survive the radiological and chemical constituents of both uranium mill tailings soil as well as various effluents of uranium mine and mill operations. Further, they could also survive in uranium ore containing 600 ppm of triuranium octoxide (U3O8) and could withstand the amendment of ore with citric acid. The ability of vetiver to take up uranium from solutions to high levels and its survival in effluents, mill tailings soil, and ore coupled with its ecological characteristics makes it an ideal plant for phytoextraction of uranium.

Acknowledgments

The authors would like to thank Mr. A. H. Khan, Rajaramanna Fellow, Bhabha Atomic Research Center, for providing mill tailings soil and effluents and Uranium Corporation of India Limited for providing uranium ore. The authors also would like to express their gratitude to Mr. S. K. Sahoo, Health Physics Division and Dr. P. D. Sawant and Mrs. A. Suja, Radiation Safety Systems Division, Bhabha Atomic Research Center for the estimation of uranium using fluorimetry techniques.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.