691
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil

&
 

Abstract

The improved efficiency of cadmium (Cd) phytoextraction potential of Calendula officinalis L. was evaluated in Cd-spiked calcareous soil, using various chelating agents. In a greenhouse study, three chelating agents, including EDTA, citric acid (CA), and tartaric acid (TA), were applied to Cd-spiked soils (50 and 100 mg kg−1) under C. officinalis L. cultivation. According to the results, C. officinalis grew normally without any toxicity signs at various Cd levels of the soil; however, with increasing the Cd levels, the plant dry weight biomass decreased, and activities of antioxidant enzymes (AOEs) increased. The application of CA and TA in Cd-spiked soils improved the physiologic traits of plants and mitigated the Cd stress since the activities of AOEs decreased. Oppositely, due to increasing the Cd excessive permeability to the root of the plant, EDTA application diminished the physiologic traits and increased the activities of AOEs. The results also showed that all the chelators, especially EDTA, markedly increased the Cd mobility factor (from 58.80% to 65.20–89.60%) in Cd-spiked soils. The bioconcentration factor (BCF = 1.3–2.90) and translocation factor (TF = 1.28–1.58) of Cd, which were >1 in all treated and untreated plant samples, as well as the accumulated Cd >100 mg kg−1, demonstrated that C. officinalis is a Cd-hyperaccumulator plant which could remediate Cd by the phytoextraction process. Regarding the biodegradation of CA, as well as the increased TF efficiency of Cd and plant biomass of CA treatments (by decreasing oxidative stress), compared to EDTA and TA treatments, it is recommended that CA be used as a superior chelating agent to enhance the efficiency of Cd phytoremediation in C. officinalis.

Graphical Abstract

Additional information

Funding

The authors would like to acknowledge the Research and Technology Institute of Plant Production (RTIPP) at Shahid Bahonar University of Kerman for its financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.