156
Views
1
CrossRef citations to date
0
Altmetric
Articles

Phytoremediation of crude oil-contaminated sediment using Suaeda heteroptera enhanced by Nereis succinea and oil-degrading bacteria

, , , , , & show all
 

Abstract

A 150-day experiment was performed to investigate the stimulatory effect of a promising phytoremediation strategy consisting of Suaeda heteroptera (S. heteroptera), Nereis succinea (N. succinea), and oil-degrading bacteria for cleaning up total petroleum hydrocarbons (TPHs) in spiked sediment. Inoculation with oil-degrading bacteria and/or N. succinea increased plant yield and TPH accumulation in S. heteroptera plants. The highest TPH dissipation (40.5%) was obtained in the combination treatment, i.e., S. heteroptera + oil-degrading bacteria + N. succinea, in which the sediment TPH concentration decreased from an initial value of 3955 to 2355 mg/kg in 150 days. BAF, BCF, and TF confirmed the role of N. succinea and oil-degrading bacteria in the amelioration and translocation of TPHs. In addition, TPH toxicity of S. heteroptera was alleviated by N. succinea and oil-degrading bacteria addition through the reduction of oxidative stress. Therefore, S. heteroptera could be used for cleaning up oil-contaminated sediment, particularly in the presence of oil-degrading bacteria + N. succinea. Field studies on oil-degrading bacteria + N. succinea may provide new insights on the rehabilitation and restoration of sediments contaminated by TPHs.

NOVELTY STATEMENT

Our study attempted to investigate the stimulatory effect of a promising phytoremediation strategy consisting of Suaeda heteroptera (S. heteroptera), Nereis succinea (N. succinea), and oil-degrading bacteria for cleaning up TPH in spiked sediment. Planting S. heteroptera can greatly increase sediment TPH removal, and its removal was enhanced greater after inoculation with oil-degrading bacteria and/or N. succinea. Moreover, the promising phytoremediation strategy developed in the current work can serve as an efficient, novel approach to removal TPH in sediment/soil. In our opinions, these findings provide insights into the assessment of their ecological risks in the environments that are of interest to broad readership of International Journal of Phytoremediation.

Additional information

Funding

This research was financially supported by the National Key R&D Program of China [2019YFC1407700].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.