197
Views
5
CrossRef citations to date
0
Altmetric
Articles

Exploring the promising potential of fallen bamboo leaves (Bambusa bambos) for efficient removal of crystal violet from wastewater

, , , , & ORCID Icon
 

Abstract

Fallen bamboo leaves (Bambusa bambos), hereinafter BL have been designed to be transformed into an efficient and sustainable adsorbent for the removal of crystal violet (CV) dye from wastewater with up to 95% scavenging ability. BL have been characterized by Fourier transform infrared (FTIR) spectra, field emission scanning electron microscopy (FESEM), and zero point charge (pHzpc). The maximum adsorption capacity is 30 mg/g at pH 10. Physico-chemical parameters have been investigated concerning pH, contact time, initial concentration, and coexistent ions. Pseudo-second-order kinetics is followed best (R2 =0.999) signifying a chemisorption pathway. Besides, intra-particle diffusion plays a governing role in the film diffusion of crystal violet into the core of the adsorbent. Langmuir isotherm model fits best (R2=0.972) suggesting a uniform, monolayer, and homogeneous adsorption. Regeneration was successful with methanol (65%) and reusability was tested for three cycles and was found to retain activity up to 80%. Analysis of CV containing industrial effluent suggests that a 36.8% reduction is possible with BL. The effect of co-existent ions suggests little influence on the adsorption. Compared to other contemporary and relevant adsorbents, it can be concluded that BL can be exercised for the sustainable decontamination of CV-containing wastewater.

NOVELTY STATEMENT

Bambusa bambos, the giant thorny bamboo is an abundantly available plant throughout the year, has been successfully exercised using its fallen leaves to scavenge crystal violet, a cationic dye from water and wastewater. Up to 95% adsorption was noticed at ambient conditions, which when further extrapolated for industrial effluent analysis, shows a remarkable 36.8% decontamination/cycle. With an adsorption capacity of 30 mg/g, it enjoys an edge over contemporary phytosorbents. The process is free from any chemical treatment, green in nature, and sustainable. Abundant availability and economic viability allow an impactful application of fallen bamboo leaves for water and wastewater treatment in a lab-to-land sequence.

Graphical Abstract

Acknowledgment

M. A. Q., P. P. S., and S. D. thank the Central University of Jharkhand for the fellowship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.