97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation of cadmium-trichlorfon co-contaminated water by Indian mustard (Brassica juncea): growth and physiological responses

, &
 

Abstract

In this study, the morphological and physiological responses of Brassica juncea to the stresses of Cadmium (Cd) and trichlorfon (TCF), and the phytoremediation potential of B. juncea to Cd and TCF were investigated under hydroponics. Results showed that Cd exhibited strong inhibition on biomass and root morphology of B. juncea as Cd concentration increased. The chlorophyll a fluorescence intensity and chlorophyll content of B. juncea decreased with the increased Cd concentration, whereas the malondialdehyde and soluble protein contents and superoxide dismutase activity increased. TCF with different concentrations showed no significant influence on these morphological and physiological features of B. juncea. The biomass and physiological status of B. juncea were predominantly regulated by Cd level under the co-exposure of Cd and TCF. B. juncea could accumulate Cd in different plant parts, as well as showed efficient TCF degradation performance. A mutual inhibitory removal of Cd and TCF was observed under their co-system. The present study clearly signified the physiological responses and phytoremediation potential of B. juncea toward Cd and TCF, and these results suggest that B. juncea can be used as an effective phytoremediation agent for the Cd-TCF co-contamination in water.

NOVELTY STATEMENT

Combined pollution of heavy metals and pesticides in agricultural water systems is a common phenomenon. In previous phytoremediation studies, limited information is available on the co-contamination of heavy metals and pesticides. In this study, we aimed to investigate the concentration-dependent morphological and physiological characteristics of B. juncea under single and co-stress of Cd and trichlorfon (TCF), and the phytoremediation ability of B. juncea to remove Cd and TCF through hydroponic experiment. B. juncea exhibited efficient removal performance of Cd and TCF alone and simultaneous exposure of both pollutants, indicating that B. juncea is an effective phytoremediation agent for the Cd-TCF co-contaminated water.

Authors’ contribution

All authors contributed to the study’s conception and design. Chao Zhang performed all the experiments and drafted the manuscript. Feng He participated in the experiment and manuscript writing. Lanzhou Chen provided critical comments, and reviewed and edited the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Natural Science Basic Research Program of Shaanxi (2022JQ-275), and the Shaanxi Province Science and Technology Innovation Team (2022TD-09).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.