160
Views
1
CrossRef citations to date
0
Altmetric
Article

RNA interference activity of single-stranded oligonucleotides linked between the passenger strand and the guide strand with an aryl phosphate linker

, , , &
Pages 647-664 | Received 05 Feb 2021, Accepted 03 May 2021, Published online: 28 May 2021
 

Abstract

Recently, we demonstrated that asymmetrical 18 base-paired double-strand oligonucleotides comprised of alternately combined 2’-O-methyl RNA and DNA, termed MED-siRNAs, show high RNase resistance, efficient cleavage of target mRNA, and the subsequent reduction of target protein expression. The 5’-terminal phosphate group and the 3’-overhang of the guide strand were required to fully activate the RNAi activity of MED-siRNAs. Here, we evaluated MED-siRNAs modified with aryl phosphate groups at the 5’-end of the guide strand. The 5’-aryl phosphorylated MED-siRNAs showed highly efficient reduction of target protein expression comparable to 5’-phosphorylated MED-siRNAs. Moreover, 5’-aryl phosphorylated MED-siRNAs linked between the aryl phosphate group at the 5’-end of the guide strand and the hydroxyl group at the 3’-end of the passenger strand with alkyl amide linkers or peptides (e.g., DL-Ser-L-Ala-L-Tyr), resulted in single-stranded MED-siRNAs with a highly efficient cleavage activity of target mRNA with binding to Argonaute 2 via an RNA interference mechanism. These linker techniques could also be used to create siRNAs composed of naturally-occurring molecules such as amino acids. These findings suggest the possibility of using these single-stranded MED-siRNAs as siRNA reagents.

Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1927077 .

Acknowledgements

We gratefully acknowledge Dr. Tatsuya Kawaguchi of Daiichi Sankyo RD Novare for his assistance of quantification of protein levels.

Disclosure statement

All authors are employees of Daiichi Sankyo. Co. Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.