274
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of common genes and pathways underlying imatinib and nilotinib treatment in CML: a Bioinformatics Study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 664-684 | Received 02 Oct 2023, Accepted 12 Dec 2023, Published online: 20 Dec 2023
 

Abstract

Imatinib (IMA) and nilotinib are the first and second generations of BCR-ABL tyrosine kinase inhibitors, which widely applied in chronic myeloid leukemia (CML) treatment. Here we aimed to provide new targets for CML treatment by transcriptome analysis. Microarray data GSE19567 was downloaded and analyzed from Gene Expression Omnibus (GEO) to identify common genes, which are downregulated or upregulated in K562-imatinib and K562-nilotinib treated cells. The differentially expressed genes (DEGs) were assessed, and STRING and Cytoscape were used to create the protein–protein interaction (PPI) network. In imatinib and nilotinib treated groups’ comparison, there were common 626 upregulated and 268 downregulated genes, which were differentially expressed. The GO analysis represented the enrichment of DEGs in iron ion binding, protein tyrosine kinase activity, transcription factor activity, ATP binding, sequence-specific DNA binding, cytokine activity, the mitochondrion, sequence-specific DNA binding, plasma membrane and cell-cell adherens junction. KEGG pathway analysis revealed that downregulated DEGs were associated with pathways including microRNAs in cancer and PI3K-Akt signaling pathway. Furthermore, upregulated DEGs were involved in hematopoietic cell lineage, lysosome and chemical carcinogenesis. Among the upregulated genes, MYH9, MYH14, MYL10, MYL7, MYL5, RXRA, CYP1A1, FECH, AKR1C3, ALAD, CAT, CITED2, CPT1A, CYP3A5, CYP3A7, FABP1, HBD, HMBS and PPOX genes were found as hub genes. Moreover, 20 downregulated genes, YARS, AARS, SARS, GARS, CARS, IARS, RRP79, CEBPB, RRP12, UTP14A, PNO1, CCND1, DDX10, MYC, WDR43, CEBPG, DDIT3, VEGFA, PIM1 and TRIB3 were identified as hub genes. These genes have the potential to become target genes for diagnosis and therapy of CML patients.

Author contributions

Conception and design study: YH and AKG; Data analysis and interpretation: YH, TO, and AKG; Writing draft and editing: YH, YRS, and SB. All authors proofread the final version of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.