90
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Nadph-Cytochrome P-450 Reductase is Involved in Flunitrazepam Reductive Metabolism in Hep G2 and Hep 3b Cells

, , , &
Pages 109-124 | Received 01 Apr 2003, Accepted 01 Jul 2003, Published online: 12 Aug 2010
 

Abstract

Flunitrazepam (FNTZ), like other benzodiazepines, has a high affinity for the benzodiazepine receptor within the gama-aminobutyric acid (GABA) complex. These affinities correlate with the pharmacological and therapeutic potencies of the drug. FNTZ is a drug commonly abused by young adults. In humans, FNTZ is oxidized to the major metabolites N-demethylfluni-trazepam (DM FNTZ) and 3-hydroxyflunitrazepam (3-OH FNTZ) and reduced to 7-aminofluni-trazepam (7A FNTZ). Human CYP2C19 and CYP3A4 are the principal P-450 cytochromes involved in DM FNTZ and 3-OH FNTZ formation. However, it is not clear which enzyme is responsible for the reduction of FNTZ to 7-aminoflunitrazepam (7A FNTZ). In this study, the involvement of NADPH-cytochrome P-450 reductase in the conversion of FNTZ to 7A FNTZ was investigated in two human hepatoma cell lines, human lymphoblast microsomes specifically expressing human NADPH-cytochrome P-450 reductase and purified recombinant human HADPH-cytochrome P-450 reductase. Significantly more FNTZ was converted to 7A FNTZ in Hep G2 than in Hep 3B cells, and this difference was associated with the catalytic activity and protein levels of NADPH-cytochrome P-450 reductase in these cells. In Hep G2 cells, conversion of FNTZ to 7A FNTZ was effectively inhibited by α-lipoic acid, an NADPH-cytochrome P-450 reductase inhibitor. In addition, formation of 7A FNTZ by the microsomal fraction of Hep G2 cells was specifically inhibited by antibody against NADPH-cytochrome P-450 reductase. Under hypoxia (N2 85%; CO2 5%; H2 10%), human lymphoblast microsomes specifically expressing human NADPH-cytochrome P-450 reductase and purified recombinant human NADPH-P-450 reductase catabolized FNTZ to 7A FNTZ in a concentration-dependent manner. These results suggest that NADPH-cytochrome P-450 reductase is involved in the reductive metabolism of FNTZ to 7A FNTZ under hypoxic conditions.

This work was supported by grant NSC 88-23141-B-002-096 from the National Science Council. The author is indebted to Dr. Kuo-Huang Ling and Dr. Thomas Barkas for reviewing the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.