322
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Review and Analysis of Inhalation Dosimetry Methods for Application to Children’s Risk Assessment

, &
Pages 573-615 | Received 05 Jul 2004, Accepted 15 Oct 2004, Published online: 24 Feb 2007
 

Abstract

Young children have a greater ventilation rate per body weight or pulmonary surface area as compared to adults. The implications of this difference for inhalation dosimetry and children’s risk assessment were evaluated in runs of the U.S. Environmental Protection Agency (U.S. EPA) 1994 reference concentration (RfC) methodology and the CitationICRP 1994 inhalation dosimetry model. Dosimetry estimates were made for 3-mo-old children and adults for particles and Category 1 and 2 reactive gases in the following respiratory-tract regions: extrathoracic (ET), tracheobronchial (BB), bronchioles (bb), and pulmonary (PU). Systemic dosimetry estimates were made for nonreactive (Category 3) gases. Results suggest similar ET dosimetry for children and adults for all types of inhaled materials. BB dosimetry was also similar across age groups except that the dosimetry of ultrafine particles in this region was twofold greater in 3-mo-old children than in adults. In contrast, the bb region generally showed higher dosimetry of particles and gases in adults than in children. Particle dose in the PU region was two- to fourfold higher in 3-mo-old children, with the greatest child/adult difference occurring for submicron size particles. Particulate dosimetry estimates with the default RfC methodology were below those found with the ICRP model for both adults and children for submicrometer sized particles. There were no cases in which reactive gas dosimetry was substantially greater in the respiratory regions of 3-mo-old children. Estimates of systemic dose of Category 3 gases were greater in 3-mo-old children than in adults, especially for liver dose of metabolite for rapidly metabolized gases. These analyses support the approach of assuming twofold greater inhalation dose in children than adults, although there are cases in which this differential can be greater and others where it can be less.

This work was supported by U.S. EPA contract 3W-2915-NATX. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the state of Connecticut or the U.S. Environmental Protection Agency.

Notes

This work was supported by U.S. EPA contract 3W-2915-NATX. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the state of Connecticut or the U.S. Environmental Protection Agency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.